How much muscle strength is required to walk in a crouch gait?
نویسندگان
چکیده
Muscle weakness is commonly cited as a cause of crouch gait in individuals with cerebral palsy; however, outcomes after strength training are variable and mechanisms by which muscle weakness may contribute to crouch gait are unclear. Understanding how much muscle strength is required to walk in a crouch gait compared to an unimpaired gait may provide insight into how muscle weakness contributes to crouch gait and assist in the design of strength training programs. The goal of this study was to examine how much muscle groups could be weakened before crouch gait becomes impossible. To investigate this question, we first created muscle-driven simulations of gait for three typically developing children and six children with cerebral palsy who walked with varying degrees of crouch severity. We then simulated muscle weakness by systematically reducing the maximum isometric force of each muscle group until the simulation could no longer reproduce each subject's gait. This analysis indicated that moderate crouch gait required significantly more knee extensor strength than unimpaired gait. In contrast, moderate crouch gait required significantly less hip abductor strength than unimpaired gait, and mild crouch gait required significantly less ankle plantarflexor strength than unimpaired gait. The reduced strength required from the hip abductors and ankle plantarflexors during crouch gait suggests that weakness of these muscle groups may contribute to crouch gait and that these muscle groups are potential targets for strength training.
منابع مشابه
Characteristics associated with improved knee extension after strength training for individuals with cerebral palsy and crouch gait.
Muscle weakness may contribute to crouch gait in individuals with cerebral palsy, and some individuals participate in strength training programs to improve crouch gait. Unfortunately, improvements in muscle strength and gait are inconsistent after completing strength training programs. The purpose of this study was to examine changes in knee extensor strength and knee extension angle during wal...
متن کاملMuscle contributions to support and progression during single-limb stance in crouch gait.
Pathological movement patterns like crouch gait are characterized by abnormal kinematics and muscle activations that alter how muscles support the body weight during walking. Individual muscles are often the target of interventions to improve crouch gait, yet the roles of individual muscles during crouch gait remain unknown. The goal of this study was to examine how muscles contribute to mass c...
متن کاملTrunk Kinematic Analysis during Gait in Cerebral Palsy Children with Crouch Gait Pattern
Background: Deficits in upper body movement have received little attention during gait in cerebral palsy (CP) children with crouch gait pattern (CGP).Objective: Purpose of this research is to describe the correlation of trunk movement with the excessive knee flexion and ankle kinematic in CP children with CGP.Methods: Gait analysis data from 57 limbs of diplegic CP children with CGP and 26 limb...
متن کاملMuscle contributions to vertical and fore-aft accelerations are altered in subjects with crouch gait.
The goals of this study were to determine if the muscle contributions to vertical and fore-aft acceleration of the mass center differ between crouch gait and unimpaired gait and if these muscle contributions change with crouch severity. Examining muscle contributions to mass center acceleration provides insight into the roles of individual muscles during gait and can provide guidance for treatm...
متن کاملMuscle Coordination and Energy Cost in Voluntary Crouch Gait
Introduction Crouch gait is a well known pathological gait pattern that is often present in diplegic children with a cerebral palsy, eg. [1]. Though the effect of crouch gait on muscle length and interventions at the muscular level on the crouch position are well studied [2,3], it is not known how changes in muscle kinetics are related to the changed posture and mechanisms of propulsion. Howeve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 45 15 شماره
صفحات -
تاریخ انتشار 2012